Скачать Udemy - Машинное обучение: кластеризация и классификация на Python (2020)

Laurik

Джедай
2 Ноя 2013
1.959
48.522
Машинное обучение: кластеризация и классификация на Python
Автор: Udemy

i.udemycdn.com_course_750x422_2816597_1a01_3.jpg


Чему вы научитесь:

EDA: исследовательский анализ данных
Точность, полнота, F1 и каппа метрики
Простая кластеризация данных
Логистическая регрессия: простая и многоуровневая
Метод ближайших соседей: kNN
Наивный Байес
Метод опорных векторов: SVM
Решающие деревья м случайный лес
XGBoost и градиентный бустинг
CatBoost и LightGBM
Ансамбль голосования и стекинга

Описание:

Мы разберем прикладные подходы к кластеризации и классификации данных с помощью машинного обучения для страхового скоринга Prudential в соревновании на Kaggle вплоть до формирования конечного результата.

В этом курсе:

Проведение исследовательского анализа данных для поиска зависимостей: EDA.
Метрики классификации: точность, полнота, F1, квадратичная каппа и матрица неточностей.
Очистка данных и оптимизация потребления памяти.
Кластеризация данных и метод ближайших соседей.
Простая и иерархическая логистическая регрессия.
Метод ближайших соседей и поиск оптимальной модели.
Метод опорных векторов: SVM.
Дерево принятия решения и случайный лес (бэггинг).
XGBosot и градиентный бустинг.
LightGBM и CatBoost
Ансамбль стекинга для голосования и выбора лучшего результата.
Выгрузка результата для соревнования на Kaggle.

Для кого этот курс:

Аналитики Python, изучающие машинное обучение
Программисты больших данных
Исследователи больших данных



Скачать:
 
Последнее редактирование модератором:

Похожие темы

Сверху