Скачать Udemy - Машинное обучение: выделение факторов на Python (2021)

AdilJi

Легенда
Магистр
11 Мар 2020
13.593
272.280
Машинное обучение: выделение факторов на Python (2021)
Автор:
Udemy

1 (2).jpg


Мы разберем задачу хакатона 2020 года по выделению факторов, в наибольшей степени влияющих на продолжительность жизни в России, с точки зрения фундаментальных и прикладных подходов к понижению размерности данных. В заключении построим ансамбль моделей для предсказания продолжительности жизни, базируясь на выделенных факторах.

Курс разбит на 4 части

В первой части мы последовательно пройдем все этапы работы с данными:

от видов задач и их постановки до работы с моделями машинного обучения для минимизации предсказательной ошибки. Дополнительно рассмотрим фундаментальные основы построения моделей машинного обучения, базовые метрики и наиболее простые модели - линейную регрессии, решающие деревья и случайный лес. А также ансамбли машинного обучения.

Во второй части на практике разберем:

Очистку и предобработку данных - ETL
Линейную регрессию для экстраполяции данных
Линейную регрессию с регуляризацией для выделения факторов
Информационные критерии понижения размерности

В заключении создадим ансамбль стекинга из простых моделей понижения размерности.

Третья часть посвящена матричным методам:

Метод главных компонент (PCA)
Сингулярное разложение (SVD)
Анализ независимых компонент (ICA)
Положительно-определенные матрицы (NMF)

Уточним решение задачи обучения без учителя через матричные методы.

В четвертой части рассмотрим нелинейные подходы:

Многомерное шкалирование (MDS).
t-SNE
UMAP
LargeVis

Стабилизируем ансамбль понижения размерности и используем его для предсказания продолжительности жизни в России, основываясь на наиболее важных макроэкономических показателях.

Для кого этот курс:

Аналитики Python, изучающие машинное обучение
Программисты больших данных
Исследователи больших данных

Чему вы научитесь:
  • Процесс и модель машинного обучения
  • Линейная регрессия и L1/L2 регуляризация
  • Решающие деревья и ансамбли стекинга
  • Корреляция и взаимная информация
  • Метод главных компонент (PCA)
  • Сингулярное разложение (SVD)
  • Анализ независимых компонент (ICA)
  • Многомерное шкалирование (MDS)
  • t-SNE, UMAP, LargeVis


Скачать:
 
Последнее редактирование модератором:

Похожие темы

Сверху